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Policy Gradient in practice

Using a critic as baseline

Initial /Final critic

» Obtained from Bernoulli policy training and Monte Carlo evaluation method
» Batches obtained from policies along training

» General idea: it is better to be with null angle and position
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Using a critic as baseline

MC estimates versus TD estimates of a critic

MC vs TD estimation

» Obtained from Monte Carlo batches from a top policy with low variance
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In the beginning, critic values are all 0
» The targets keep the same:

this is a regression problem

>
» Thus the loss are all low
> No need to recompute the » The TD error 1, then should | to 0
target from the batch when >
| 2

a Need to recompute the target at each iteration
the critic changes

(or target critic)
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Issues

Losses of the critics
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» Bernoulli (left) and Normal (right) policies

» The critic loss does not go to 0
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Losses of Bernoulli, longer run
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» In Bernoulli policies, randomness does not go down to 0
» In Normal policies, fixed Gaussian variance
» Squashed Gaussian policy: tunable variance, but same story

> If the loss goes to 0, the policy degenerates
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» Trained MC critic from random policy versus from top policy

» From a top policy, it does not work anymore

» Data along the same optimal trajectory: not enough exploration
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Policy Gradient with critic baseline
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» Learning the baseline (here, a Q-function) works well

» Until the lack of exploration results in critic degeneracy

» Sometimes, degeneracy is much more abrupt




Policy Gradient in practice

Issues

Any question?

Send mail to: Olivier.Sigaud@upmc.fr
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